

 Page 1 of 41 “Integrating Build Forge with ClearQuest”

Integrating Build Forge with ClearQuest

Using the Basic ClearQuest/BuildForge Integration

Kristofer A. Duer

January 26, 2009

 Page 2 of 41 “Integrating Build Forge with ClearQuest”

INTRODUCTION... 3

BASIC CLEARQUEST INTEGRATION .. 4
CLEARQUEST REQUIREMENTS .. 4

BuildTracking ... 4
DeploymentTracking .. 4

BUILD FORGE REQUIREMENTS.. 4
CQ_DBNAME.. 4
CQ_DBSET .. 4
CQ_USER... 5
CQ_PASSWORD ... 5
CQ_RELEASE_NAME.. 5
CQ_RECORD_ID... 5
HIDE_PASSWORD ... 5
BFCQDEBUG .. 5

HOW IT WORKS ... 5
Instantiation .. 5
Completion.. 6

STEPS TO INTEGRATE EXAMPLES... 8
ClearQuest Steps... 8
Build Forge Steps.. 10
Verification Steps.. 11

BFCQBUILD.PL ... 14
BREAKDOWN .. 14
DIFFERENT FUNCTIONS ... 15

Main Body .. 15
ValidateInfo().. 16
RecordExists() .. 18
CheckSubmit() .. 18
ValidateNextState()... 19
CheckReleaseRecord().. 20
SubmitBuild() ... 20
UpdateBuild() ... 21

CUSTOMIZING THE BUILD FORGE – CLEARQUEST BASE INTEGRATION ... 22
CUSTOMIZING BFCQBUILD.PL ... 22

Getting the Tag Field When Using .retag In A Build ... 22
CUSTOMIZING THE CLEARQUEST BUILD RECORD .. 24
HOW IT ALL FITS TOGETHER ... 25

APPENDIX A – BFCQBUILDPL. SCRIPT .. 28

APPENDIX B - MODIFIED BFCQBUILD.PL .. 35

 Page 3 of 41 “Integrating Build Forge with ClearQuest”

Introduction
This white paper introduces the Build Forge with ClearQuest integration capabilities for you to leverage.
After reading this white paper you will be familiar with how Build Forge integrates with ClearQuest. This
paper will also show a couple of techniques to customize the integration in your environment. This
customization will allow you to take advantage of more functionality in both Build Forge and
ClearQuest.

This integration grants Build Forge creating and updating of build records inside of ClearQuest. This can
be a powerful tool that can help your organization keep accurate records of builds, what went into
them and the results of these builds in a ClearQuest format.

The integration is available for version 7.0 and better for both Build Forge and ClearQuest.

This paper does not discuss the ClearQuest Adaptors available. The main goal is to illustrate how Build
Forge uses the base ClearQuest integration to give end-users a better idea of how and when to employ
it in their environments.

 Page 4 of 41 “Integrating Build Forge with ClearQuest”

Basic ClearQuest Integration
The basic Build Forge/ClearQuest integration involves only these two products. You can use this
integration to capture basic information about the build.

The integration looks for specific environment variables in the project’s environment to initiate the
script. When Build Forge sees these variables it will then use the ClearQuest API that is called from the
Perl script bfcqbuild.pl to manage the integration.

This script is located in:

• Microsoft Windows: %BF_HOME%\integration
• UNIX and Linux: $BF_HOME/Platform/integration

This script then connects to ClearQuest and enters a new build record with the build information added
to it throughout the course of the build. At the end the record is flipped to retired and the step’s results
and log web link are posted into the record.

ClearQuest Requirements
The ClearQuest database will require packages to be applied to the database being used for the
integration – BuildTracking and DeploymentTracking. The ClearQuest client on the machine where
the engine is installed will require the connection set to the ClearQuest database being used for the
integration. The code for the integration is a combination of some set up and logic within the Build
Forge engine as well as the cqbuild.pl script in the integration directory. This integration only works
with ClearQuest 7.0 or higher.

BuildTracking
This package contains the record type BTBuild that is used for capturing the base ClearQuest
integration information.

DeploymentTracking
This package contains the DTRelease record type used to hold the releases that have current BTBuild
records. The release is captured in the project environment variable CQ_RELEASE_NAME.

Build Forge Requirements
There are a few environment variables Build Forge requires to be available in the project’s environment
group. These environment variables prompt a special routine within the engine to create, update, and
add data to a ClearQuest record.

CQ_DBNAME
This is the name of the ClearQuest database where the packages BuildTracking and
DeploymentTracking are applied.

CQ_DBSET
This is the database set, or connection string to use. If this is not used then the ClearQuest API will use
the default database set with the version string of the ClearQuest version, for example 7.0.0. This can
be omitted if you are using either the default connection set for Build Forge, or there is only one
connection set specified for ClearQuest.

 Page 5 of 41 “Integrating Build Forge with ClearQuest”

CQ_USER
This is the name of the ClearQuest user who has access to this database for record creation and
updates.

CQ_PASSWORD
This is the password of the ClearQuest user specified for the CQ_USER environment variable. This
variable is typically set to assign hidden, suppress display to prevent any Build Forge user from having
access to the variable during job starts.

CQ_RELEASE_NAME
This specifies a release to be captured under the Release field on the BTBuild record and a release is
captured in the DTRelease record type.

CQ_RECORD_ID
This specifies a Build Record ID. This will not typically be used in the project environment. If this
variable does not exist the script will then create the Build Record. If it does exist then the build will
add the step results to the current record. This variable is created during a build run by the system to
deal with restarts and step log processing.

HIDE_PASSWORD
The ClearQuest password for the CQ_PASSWORD variable will be hidden by the script it this option is
enabled when running in ClearQuest debug mode. This is a security measure and should always be
employed in the project environment. The value can be anything as the script only checks to see if the
variable exists.

BFCQDEBUG
This enables debugging within the cqbuild.pl script. The debugging information is for the Build Forge
engine only. The data is not sent to the build log.

How it Works
The build for the Build Forge-ClearQuest integration passes through these three main phases:

1) Instantiation
2) Step Update
3) Completion
4) Retirement

These phases are responsible for creating, modifying, and recording build information into a BTBuild
record type. In addition to this the release specified will also be created for the DTRelease record type.

An adapter can influence whether or not a build is started, or cancelled. In the same way an adapter
can influence whether a build record is created or modified through the use of adapter links. A build
and corresponding ClearQuest build record will not be created in the event of a failed adapter step
while using an adapter link. This allows for source adaptors to control when the build fires, keeping
unneeded builds out of the Build Forge database as well as keeping empty build records out of the
ClearQuest database.

Instantiation
This phase is entered in one of two ways:

1) A new build
2) A restart

 Page 6 of 41 “Integrating Build Forge with ClearQuest”

A new build will create a new build record, and assign the id to the CQ_RECORD_ID variable. This
variable will be available in the build environment and can be used by notifications, or other steps
within this project.

A restart of a build takes advantage of the existing CQ_RECORD_ID variable to reference the currently
available build record and add the additional step log runs to it. In each case the instantiation phase
will modify the record state to “Submitted” and the Start Time field will be updated to reflect the
current date and time of the engine machine. The field values are dynamically produced based on the
build and project CQ_ variables. These variables are created internally and not run on an agent
machine. As a result the build variables and Build Forge specific variables – BF_... – are not available
to this script.

Breakdown of initial field values:
FIELD DEFAULT VALUE DESCRIPTION
id Next available

ClearQuest record id
number

This field is auto incremented and controlled internally
by ClearQuest.

State Submitted A new or restarted build will set the State field to
“Submitted”

Build Start Time Current date and time of
the engine machine

This value is updated with the default value for any
new or restarted build

ReleaseName Value in the
CQ_RELEASE_NAME
project environment
variable

The release name is used to organize builds for
different releases within the ClearQuest database.

Build ID The BF_TAG variable
upon project start

This value is static and cannot be adjusted
dynamically. A .retag will change the build tag within
Build Forge; however, ClearQuest will use the initial
tag for the project.

Build Web URL The web link for the
build referenced in this
build record

The URL is built using the system setting or the
hostname of the engine machine. This item is then
plugged into the link in the following format:
http://<server>/
/fullcontrol/index.php?mod=jobs&action=edit&bf_id=<
Build ID in BF>
If you are using a non-default port make sure the
Console URL option in Admin > System has the
server:port format for this link to work properly.

Build Log - Build Step Summary - The default heading is entered into this field, and step
results are added below.

Completion
Completion performs the final tasks of the build for the ClearQuest build record. In this phase the build
record captures whether the build passed or failed. The step results are posted to the Build Log tab.
This phase can have one of three outcomes:

1) Completed
a. This result represents a build which passed as well as a build which passes with

warnings.
2) Failed

a. This result represents a build which failed.

 Page 7 of 41 “Integrating Build Forge with ClearQuest”

3) Retired
a. This result occurs when a build is purged from the Build Forge system.

Steps to Integrate Examples

This process runs through the steps needed to create a Build Forge-ClearQuest integrated
environment. We will start with ClearQuest requirements first. Next we will look at what is needed on
the Build Forge side. Finally we will put it all together in a verification step to ensure the integration is
running and the ClearQuest record is created.

ClearQuest Steps
1) Modify a schema currently being used, or a new one to be associated with the Build Forge-

ClearQuest integration database. Open the IBM ClearQuest Design Tool and select a schema to
modify.

2) Open the Package Wizard and select the “More Packages” button.

 Page 8 of 41 “Integrating Build Forge with ClearQuest”

3) Select the BuildTracking package and apply it to this schema

4) Perform the same actions to add the DeploymentTracking package to the same schema just
modified.

 Page 9 of 41 “Integrating Build Forge with ClearQuest”

5) Add the connection to ClearQuest for this database if it does not already exist using the
ClearQuest Maintenance tool.

You now have a ClearQuest database with the appropriate packages needed for the base integration.
The next steps are implementing the ClearQuest project level environment variables in Build Forge.

Build Forge Steps
1) Add as a minimum these four environment variables to an environment group:

a. If you are using either multiple database connections, or the connection for the Build
Forge database is not the ClearQuest default then specify an additional variable –
CQ_DBSET.

 Page 10 of 41 “Integrating Build Forge with ClearQuest”

b. Enable HIDE_PASSWORD for security purposes

2) Create a new test project and add this environment to it

3) Add a sample step – this initial run is only a test to ensure the integration is working

Verification Steps
The final phase in the setup is verification. The build for the Build Forge-ClearQuest integration passes
through these two main phases:

1) Run the build – The step log has a new variable BF_CQ_RECORD which contains the ClearQuest
record ID which was created and tied to this build.

 Page 11 of 41 “Integrating Build Forge with ClearQuest”

2) Search for the ClearQuest Record

 Page 12 of 41 “Integrating Build Forge with ClearQuest”

3) Review the record for the various fields which are filled in

 Page 13 of 41 “Integrating Build Forge with ClearQuest”

 Page 14 of 41 “Integrating Build Forge with ClearQuest”

bfcqbuild.pl
The bfcqbuild.pl script is executed at various times through out the build lifecycle. This is the entry
point given for the integration between Build Forge and ClearQuest. The script is filled with various
functions and methods which all fit together to create and update ClearQuest build records. The script
is handed a task in the form of a command line argument which it then uses to determine what should
be done for this particular task.

Breakdown

The ClearQuest build record has four valid states. Each state can only transition into a particular next
state. Below is a list of the valid states and the transitions each state can travel through.

1) Submitted
a. Completed
b. Failed
c. Submit
d. Retire

2) Completed
a. Retire

3) Failed
a. Submit
b. Completed
c. Retire

4) Retired

The list shows us only failed builds can be restarted as the script stands now. A passed build with or
without warnings will be considered completed. As a result they cannot be re-run after completion. The
only transition these builds have left is upon the purge process of the build record in Build Forge when
the record transitions into Retired. A failed build can be resubmitted, or restarted to get a completed,
or pass status. These transitions are enforced inside of the cqbuild.pl script, not in the ClearQuest
record. This allows for changing the behavior of these different states should the end user so desire.
For example the Completed state can be modified in the ValidateNextState() function to allow for
restarts.

There are four main tasks, or command line arguments, a build will send to this script:

1) Submit
a. This request occurs upon a new build instantiation. The first step of a project will prompt

the creation of a ClearQuest build record. Adapter link steps occur prior to the first step
which results in the ClearQuest build record getting created only upon a pass of the
adapter link step. A restart will also be entered as a Submit request. The only difference
is a build record will exist forcing a different path down the logic of the script.

2) Complete
a. This captures the step result information once the project completes and places it into

the Build Details > BuildLog box in the record. In addition it sets the state of the build to
Completed.

3) Failure
a. This captures the step result information once the project completes and places it into

the Build Details > BuildLog box in the record. In addition it sets the state of the build to
Failed. A project which passes with warnings will be considered Completed.

4) Retire
a. This request is made upon a purge of the build. This will set the record state to Retired.

 Page 15 of 41 “Integrating Build Forge with ClearQuest”

Different Functions

Main Body

The main body of the script controls the program flow. This main body is responsible for parsing the
argument and starting the right chain reaction of methods for arriving at the desired result. This piece
starts off by grabbing the request from the engine and filling the $ReqState variable with this value.
This will be the entry point into the rest of the logic. The script then takes this variable and submits it
to the ValidateInfo() function. This function will tell us if the request is a valid request. This function
call represents the first time the script will attempt to connect to ClearQuest through the ClearQuest
API.

The next step assuming the request is valid is the check to see if the record exists using the
RecordExists() function call. This call will return the state of the ClearQuest record used by the build. If
this record does not exists then ClearQuest will return undef, and subsequently the $CurState variable
will be undef. This is an important piece which will allow us to go through the rest of the flow whether
this is a new build or a restart.

The next phase is to evaluate the return we received from RecordExists(). If the variable $CurState is
undef then this is a new build. The logic flow will travel to the CheckSubmit() function which will fill the
$ReqState variable with “Submit”. If this is a current build, i.e. a restart, then the ValidateNextState()
function will be called. If the next state allows for a resubmit\restart then $ReqState will be filled with
“Resubmit”. Finally if the build does not have the next valid state according to the current record state
then $ReqState will be filled with “CantChange”. The $ReqState variable now holds the key for the rest
of the script and the logic path it will follow.

The next phase checks to see if $ReqState is “CantChange”. If it is then the build fails immediately. If
it is “Submit” CheckReleaseRecord() is called followed immediately by SubmitBuild(). The
CheckReleaseRecord() function looks for a DTRelease record for the release specified in the
CQ_RELEASE_NAME environment variable. If it does not exist one is created and the ClearQuest build
record is linked back to the release record. The SubmitBuild() function creates the new build record for
the release. There are four environment variables used by this function sent to it by the engine: TAG,
CQ_RELEASE_NAME, BUILD_URL, BUILD_LOG_TEXT. If this is a restart or a build completion the
UpdateBuild() function is called. This function fills in any missing data upon build completion such as
the step results and sets the final state of the record based on the final status of the build –
Completed, Failed or Retired.

Scope of our application
{
 my $ReqState = shift || "Submit";

 my $CQSession;
 my $CurState = "";
 eval { $CQSession = ValidateInfo($ReqState); };
 Error("Could not connect to ClearQuest - Invalid Initialization Data",$@) if($@);

 # See if this is a new submission, or a resubmit.

 # Get the current state if we have one...

 eval {$CurState = RecordExists($CQSession); };

 Page 16 of 41 “Integrating Build Forge with ClearQuest”

 Debug("Curstate Is: $CurState");

 if($ReqState eq "Submit" && !$CurState) {
 $ReqState = CheckSubmit($CurState);
 Debug("Reqstate Now: $ReqState");
 }
 else {
 $ReqState = ValidateNextState($CurState,$ReqState);
 Debug("ReqState Now: $ReqState");
 }

 if($ReqState eq "CantChange") {
 Error("Cannot change build record.","The build record is in a Retired state.");
 }

 # Do our action.
 if($ReqState eq "Submit") {
 eval {CheckReleaseRecord($CQSession);};
 Error("Could not create Release Record in ClearQuest",$@) if($@);
 eval {SubmitBuild($CQSession);};
 Error("Could not submit build record to ClearQuest",$@) if($@);
 }
 else {
 eval {UpdateBuild($CQSession,$ReqState);};
 Error("Could not update build record in ClearQuest",$@) if($@);
 }

 # Drop our session, don't care if we error here, as we're leaving.
 eval { CQSession::Unbuild($CQSession); };

 exit 0;
} # Scope

ValidateInfo()

ValidateInfo() takes one argument - $ForState. This argument is given to the script directly from the
Build Forge engine and can be one of these values – Submit, Failure, Complete, Retire. A restart of a
failed build or new build will use Submit, a completed build which passes or has warnings will use
Complete, a build which fails will use Failed, and a purge event will use Retire.

All of the states require certain environment variables to be present. These environment variables are
made by the Build Forge engine and passed down to the script.

1) All states
a. CQ_DBNAME

i. The name of the Build Forge database given to ClearQuest
b. CQ_USER

i. The username who has access to the CQ_DBNAME database
2) Submit

a. CQ_RELEASE_NAME

 Page 17 of 41 “Integrating Build Forge with ClearQuest”

i. The DTRelease record’s Release Name which all build records associated with this
Build Forge environment group will use

b. TAG
i. Internal ClearQuest integration only initial build tag of the project. The build

record will only reflect this initial value – any .retags will not be reflected in the
build record

c. BUILD_URL
i. The URL to the Build Forge management console for this particular build

d. BUILD_LOG_TEXT
i. This variable holds the step results information for the build

3) Failure
a. CQ_RECORD_ID

i. The ClearQuest build record ID. This variable is created initially by the engine and
then looked for by the engine upon restart, and build completion. This value
should never be modified via .bset.

b. BUILD_LOG_TEXT
4) Complete

a. CQ_RECORD_ID
b. BUILD_LOG_TEXT

5) Retire
a. CQ_RECORD_ID

If any of these environment variables are missing the script will die, and kill the project run. The
function uses the ClearQuest API call $CQSession->UserLogon() to get a logon token to operate on the
ClearQuest build records.

sub ValidateInfo {
 my ($ForState) = @_;
 my @RequiredInfo = ("CQ_DBNAME","CQ_USER");

 # Check our entry data...
 if($ForState =~/Submit/i) {
 push @RequiredInfo,("CQ_RELEASE_NAME","TAG","BUILD_URL","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Failure/i) {
 push @RequiredInfo,("CQ_RECORD_ID","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Complete/i) {
 push @RequiredInfo,("CQ_RECORD_ID","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Retire/i) {
 push @RequiredInfo,("CQ_RECORD_ID");
 }
 foreach my $Required (@RequiredInfo) {
 unless($ENV{$Required}) {
 die "The required environment parameter [$Required] for operation [$ForState]
was not set";
 }
 }

 # Create a connection to ClearQuest.
 my $CQSession = CQPerlExt::CQSession_Build();
 my $CQ_Password = $ENV{'CQ_PASSWORD'} || "";

 Page 18 of 41 “Integrating Build Forge with ClearQuest”

 my $DB_Set = $ENV{'CQ_DBSET'} || "";
 Debug("Connecting To ClearQuest using the following Credentials:");
 Debug("USER:$ENV{'CQ_USER'}") if($ENV{'CQ_USER'});
 Debug("PASSWORD:$CQ_Password") if($CQ_Password && !$ENV{'HIDE_PASSWORD'});
 Debug("DBNAME:$ENV{'CQ_DBNAME'}") if($ENV{'CQ_DBNAME'});
 Debug("DBSET:$DB_Set") if($DB_Set);
 $CQSession->UserLogon($ENV{'CQ_USER'},$CQ_Password,$ENV{'CQ_DBNAME'},$DB_Set);
 return $CQSession;
} # ValidateInfo

RecordExists()

The RecordExists() function checks to see if a build record exists. If this check fails the $StateRec
variable will be undef and will return this to the caller. If successful the record state is returned to the
caller. This state can be one of the following:

1) Submitted
a. Represents a new build or a restart of a failed build

2) Completed
a. Represents a passed or passed with warnings build

3) Failed
a. Represents a failed build

4) Retired
a. Represents a purged build

This function will use the ClearQuest API calls $CQSession->GetEntity(),$Entity->GetFieldValue and
$StateRec->GetValue.

sub RecordExists {
 my ($CQSession) = @_;
 my $RecId = $ENV{'CQ_RECORD_ID'};
 my $Entity = undef;
 if($RecId) {
 $Entity = $CQSession->GetEntity("btbuild",$RecId);
 }
 my $StateRec = $Entity->GetFieldValue("State");
 return $StateRec->GetValue;
} # RecordExists

CheckSubmit()

Currently the only purpose of this function is to return “Submit” for a new build record. In the current
release of the script the check to get to this function looks for both the $ReqState variable being in
“Submit” and $CurState being undef. As a result $State will always be undef and will return “Submit”
for new builds.

sub CheckSubmit {
 my($State) = @_;
 if($State =~ /Retired/i) {

 Page 19 of 41 “Integrating Build Forge with ClearQuest”

 return "CantChange";
 }
 elsif($State =~ /(Completed|Failed)/i) {
 return "Resubmit";
 }
 elsif($State =~ /Submitted/i) {
 return "NoChange";
 }
 return "Submit";
} # CheckSubmit

ValidateNextState()

The ValidateNextState() function is used to enforce policy inside the script. This is where restarts of
completed passed builds are prevented. The function receives two arguments - $CurState and
$ReqState. $CurState represents the current state the build record is in, while $ReqState represents
the state you would like to transition to, based on the build in Build Forge be it a start, restart or
purge. The flow goes through the four states and fills the array @ValidStates with the valid next states
for this particular build. The final piece fails out if the desired state to move to is not allowed by the
current state. For example a completed passed build will have a current state of Completed which
allows for one transition state – Retired. A restart will be prevented due to this function.

sub ValidateNextState {
 my($CurState,$ReqState) = @_;
 my @ValidStates = ("Submit","Resubmit","Retire","Complete","Failure");
 my $Valid = 0;
 foreach my $State (@ValidStates) {
 if($ReqState =~ /^$State$/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","State [$ReqState] is not recognized as a valid state for a
ClearQuest Build record. Valid states are [".join("],[",@ValidStates)."].") unless($Valid);
 @ValidStates = ();
 $Valid = 0;
 if($CurState =~ /Failed/i) {
 @ValidStates = ("Resubmit","Retire","Submit");
 if($ReqState =~ /Submit/i) {
 $ReqState = "Resubmit";
 }
 }
 elsif($CurState =~ /Completed/i) {
 @ValidStates = ("Retire");
 }
 elsif($CurState =~ /Retired/i) {
 @ValidStates = ();
 }
 elsif($CurState =~ /Submitted/i) {
 @ValidStates = ("Complete","Failure","Submit","NoChange");
 if($ReqState =~ /Submit/i) {
 $ReqState = "NoChange";

 Page 20 of 41 “Integrating Build Forge with ClearQuest”

 }
 }
 foreach my $State (@ValidStates) {
 if($ReqState =~ /$State/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","Current state is [$CurState], requested next state as
[$ReqState], valid nextstate(s) are [".join("],[",@ValidStates)."].") unless($Valid);

 return $ReqState;
} # ValidateNextState

CheckReleaseRecord()

The CheckReleaseRecord() function either returns the release record object if it exists, or creates a
new one. This function initially uses the ClearQuest API call $CQSession->GetEntity() to get the release
record. If it does not exist then the variable $ReleaseRec will not be a reference and the first return will
not process. It will then take in the CQ_RELEASE_NAME variable and create a new release record
inside of ClearQuest. This release record is a container for all of the build records for a particular
release.

sub CheckReleaseRecord {
 my($CQSession) = @_;
 my $ReleaseRec = undef;
 eval {$ReleaseRec = $CQSession->GetEntity("dtrelease",$ENV{'CQ_RELEASE_NAME'});};
 return if(ref($ReleaseRec) eq "CQEntity");
 # Need to create the release record...
 my $CreateReleaseRec = $CQSession->BuildEntity("dtrelease");
 $CreateReleaseRec->SetFieldValue("release_name",$ENV{'CQ_RELEASE_NAME'});
 $CreateReleaseRec->Validate();
 my $CommitResult = $CreateReleaseRec->Commit();
 if($CommitResult eq "") {
 Log("Release Record Created:\n$ENV{'CQ_RELEASE_NAME'}");
 }
 else {
 Error("Could not create Release Record.",$CommitResult);
 }
}

SubmitBuild()

The SubmitBuild() function is only called if the build record does not already exist. It will run through
and create the new build record for the new Build Forge build.

sub SubmitBuild {
 my($CQSession) = @_;
 my $BuildRec = $CQSession->BuildEntity("btbuild");
 $BuildRec->SetFieldValue("start_datetime",genTimeStamp());
 $BuildRec->SetFieldValue("build_system_id",$ENV{'TAG'});

 Page 21 of 41 “Integrating Build Forge with ClearQuest”

 $BuildRec->SetFieldValue("releasename",$ENV{'CQ_RELEASE_NAME'});
 $BuildRec->SetFieldValue("build_system_url",$ENV{'BUILD_URL'});
 $BuildRec->SetFieldValue("buildlog",$ENV{'BUILD_LOG_TEXT'});
 my $RecordId = $BuildRec->GetDisplayName();

 # Validate and Commit.
 $BuildRec->Validate();
 $BuildRec->Commit();
 Log("Build Record Created:\n$RecordId");
} # SubmitBuild

UpdateBuild()

The UpdateBuild() function is responsible for handling capturing the completed build’s details such as
the step results, and restart results. This is the function which can be modified to add different
information to the build record. We go over some basic customization possibilities in the final section
Customizing the Build Forge – ClearQuest Base Integration.

UpdateBuild

Update an already existing Build Record.
sub UpdateBuild {
 my($CQSession,$Action) = @_;
 my $BuildRec = $CQSession->GetEntity("btbuild",$ENV{'CQ_RECORD_ID'});
 $CQSession->EditEntity($BuildRec,"modify");
 $BuildRec->SetFieldValue("build_system_url",$ENV{'BUILD_URL'})
if(exists($ENV{'BUILD_URL'}));
 $BuildRec->SetFieldValue("buildlog",$ENV{'BUILD_LOG_TEXT'})
if(exists($ENV{'BUILD_LOG_TEXT'}));
 if($Action =~ /(NoChange|Resubmit)/i) {
 $BuildRec->SetFieldValue("start_datetime",genTimeStamp());
 }
 elsif($Action !~ /Retire/i) {
 $BuildRec->SetFieldValue("end_datetime",genTimeStamp());
 }
 $BuildRec->Validate();
 $BuildRec->Commit();

 if($Action=~/(Resubmit|Failure|Complete|Retire)/i) {
 $CQSession->EditEntity($BuildRec,$Action);
 $BuildRec->Validate();
 $BuildRec->Commit();
 }
 Log("Build Record Updated:\n$ENV{'CQ_RECORD_ID'}");
} # UpdateBuild

 Page 22 of 41 “Integrating Build Forge with ClearQuest”

Customizing the Build Forge – ClearQuest Base Integration
There are a couple of customization entry points provided within the script. The engine is hard coded to
send across only a few ClearQuest specific environment variables. These will be the only variables
available for the life of the script regardless of what environment variables are available to the build.

1) CQ_DBNAME
2) CQ_USER
3) CQ_RELEASE_NAME
4) TAG
5) CQ_DBSET
6) CQ_PASSWORD
7) BUILD_URL
8) BUILD_LOG_TEXT
9) CQ_RECORD_ID

Be sure to back up the current bfcqbuild.pl script before any modifications are made.

Customizing bfcqbuild.pl

The BUILD_URL variable contains at the end of it the build id of the associated build. This build id can
then be used to gain access to a vast array of data regarding the build through the Build Forge API.
The format of the URL is:
http://<server>/fullcontrol/index.php?mod=jobs&action=edit&bf_id=<build id>
For example:
http://server/fullcontrol/index.php?mod=jobs&action=edit&bf_id=130

The following regex can be used to get the build id from the URL:
$ENV{'BUILD_URL'} =~ /.*?bf_id\=(\d*)/;
my $bid = $1;

This variable holds the key to getting other build information from Build Forge. The best place to
modify the bfcqbuild.pl script is within the UpdateBuild() function. This is the last function run against
any build.

Below are a couple of examples of getting different data and updating the current ClearQuest record
type with information.

Getting the Tag Field When Using .retag In A Build
The .retag command changes the tag dynamically, however the variable $TAG will not contain this new
value. The build id can be used to retrieve this value using the Build Forge API. For example in the
UpdateBuild() function we have:

UpdateBuild

Update an already existing Build Record.
sub UpdateBuild {
 my($CQSession,$Action) = @_;
…

 Page 23 of 41 “Integrating Build Forge with ClearQuest”

Add a new function call to UpdateBuild():
my $tag = BF_tag();

This function will be responsible for getting the Build Forge build object for the build. This build object
will in turn give a window into a great deal of information.

sub BF_tag {

 my $conn = bf_conn();
 $ENV{'BUILD_URL'} =~ /.*?bf_id\=(\d*)/;
 my $bid = $1;
 my $build = BuildForge::Services::DBO::Build->findById($conn, $bid);
 my $build_tag = $build->getTag();
 my $build_result = $build->getResult();
 return $build_tag;

}

sub bf_conn {

#Update with the @INC path for the BuildForge Perl API client for your system

 use lib "C:/Perl/site/lib";
 use BuildForge::Services;

 my $hostname = 'localhost';
 my $user = 'build';
 my $pass = 'build';

my $conn = new BuildForge::Services::Connection($hostname);
 $conn->authUser($user, $pass);
 return $conn;

}

We are able to get the end result of a build at the end as well. The script is run upon project
completion allowing for the latest result, such as warning, to be retrieved. We will use these two items
during the final phase of the customization to add the actual build tag changed from a .retag, and
introduce a new state – Warning – which will allow restarts.

sub bf_result {
 $ENV{'BUILD_URL'} =~ /.*?bf_id\=(\d*)/;
 my $conn = bf_conn();
 my $bid = $1;
 my $build = BuildForge::Services::DBO::Build->findById($conn, $bid);
 my $build_result = $build->getResult();
 return $build_result;
}

Items to be aware of during this customization:

1) The Build Forge Perl client will need to be installed
2) The Perl/site/lib directory will needed to be added via use lib pragma

a. The cqperl utility is used to run the scripts and this typically does not place the local Perl
@INC directories in the directories searched for a module. The use BuildForge::Services

piece will fail if cqperl cannot find the module. The BuildForge module folder is placed in
the perl/site/lib directory.

3) The ClearQuest record will require modification. The changes you make are yours to support.
This shows a possibility only using the built in BTBuild package type.

Customizing the ClearQuest Build Record
We will make two changes for the purposes of this document. The possibilities beyond these are pretty
wide open.

1) Make a new field to hold the new build tag.

The current BTBuild record tag field is only writable upon record creation. This will not allow for
adjustment of the build tag later in the build process which is what is required to update the new .retag
build tag onto the ClearQuest record.

1) Open the ClearQuest Designer
2) Open the schema with the BTBuild package applied to it
3) Add a new field – Build_Tag

This field will hold the new build tag from the

2) Add a new state - Warning

The Completed state is currently a catch all for builds which pass, or pass with warnings. There may be
a desire to restart builds with warnings and adding a new state will help with this goal.

1) Add a new Action – Warning

a.

 Page 24 of 41 “Integrating Build Forge with ClearQuest”

2) Add a new state – Warning – and set the same transitions as Failed

a.
3) Modify the Completed state to also include Warning

a.

The final function will only be called when the build is completed. Setting the completed state with the
transition ability into warning will allow for the bfcqbuild.pl modifications to transition into warning
should the actual result be a warning.

How it all fits together
The additional functions and added ClearQuest BTBuild modifications can now be taken advantage of.
Modify the UpdateBuild() and ValidateNextState to make use of the new functions added above.

sub UpdateBuild {
 my($CQSession,$Action) = @_;

 my $BuildRec = $CQSession->GetEntity("btbuild",$ENV{'CQ_RECORD_ID'});
 $CQSession->EditEntity($BuildRec,"modify");
 $BuildRec->SetFieldValue("build_system_url",$ENV{'BUILD_URL'})
if(exists($ENV{'BUILD_URL'}));
 $BuildRec->SetFieldValue("buildlog",$ENV{'BUILD_LOG_TEXT'})
if(exists($ENV{'BUILD_LOG_TEXT'}));

################################
#Grab the new Build Tag
################################

 my $tag = BF_tag();
################################
#Update the new record field build_tag with the new build tag
################################

 $BuildRec->SetFieldValue("build_tag",$tag);

if($Action =~ /(NoChange|Resubmit)/i) {
 $BuildRec->SetFieldValue("start_datetime",genTimeStamp());
 }
 elsif($Action !~ /Retire/i) {
 $BuildRec->SetFieldValue("end_datetime",genTimeStamp());
 }

 Page 25 of 41 “Integrating Build Forge with ClearQuest”

 Page 26 of 41 “Integrating Build Forge with ClearQuest”

 $BuildRec->Validate();
 $BuildRec->Commit();

 if($Action=~/(Resubmit|Failure|Complete|Retire)/i) {

 ################################

#Get the build result
################################

 my $result = bf_result();
 $CQSession->EditEntity($BuildRec,$Action);
 $BuildRec->Validate();
 $BuildRec->Commit();

 ################################

#If the result is either WARNING_FILTER or WARNING_FAILED_STEP
#Update the build record state to Warning
################################

 if ($result =~ /warn/i) {
 my $ret = $CQSession->EditEntity($BuildRec,'Warning');
 $BuildRec->Validate();
 $BuildRec->Commit();
 }
 }

 Log("Build Record Updated:\n$ENV{'CQ_RECORD_ID'}");
} # UpdateBuild

sub ValidateNextState {
 my($CurState,$ReqState) = @_;
 my @ValidStates = ("Submit","Resubmit","Retire","Complete","Failure");
 my $Valid = 0;
 foreach my $State (@ValidStates) {
 if($ReqState =~ /^$State$/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","State [$ReqState] is not recognized as a valid state for a
ClearQuest Build record. Valid states are [".join("],[",@ValidStates)."].") unless($Valid);
 @ValidStates = ();
 $Valid = 0;
 if($CurState =~ /Failed/i) {
 @ValidStates = ("Resubmit","Retire","Submit");
 if($ReqState =~ /Submit/i) {
 $ReqState = "Resubmit";
 }
 }
################################
#Add a Warning valid state
################################

 if($CurState =~ /Warning/i) {
 @ValidStates = ("Resubmit","Retire");

 Page 27 of 41 “Integrating Build Forge with ClearQuest”

 if($ReqState =~ /Submit/i) {
 $ReqState = "Resubmit";
 }
 }
 elsif($CurState =~ /Completed/i) {
 @ValidStates = ("Resubmit","Retire","Submit");
 }
 elsif($CurState =~ /Retired/i) {
 @ValidStates = ();
 }
 elsif($CurState =~ /Submitted/i) {
 @ValidStates = ("Complete","Failure","Submit","NoChange");
 if($ReqState =~ /Submit/i) {
 $ReqState = "NoChange";
 }
 }

 foreach my $State (@ValidStates) {
 if($ReqState =~ /$State/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","Current state is [$CurState], requested next state as
[$ReqState], valid nextstate(s) are [".join("],[",@ValidStates)."].") unless($Valid);

 return $ReqState;
} # ValidateNextState

 Page 28 of 41 “Integrating Build Forge with ClearQuest”

Appendix A – bfcqbuildpl. script
#!/usr/bin/cqperl

Copyright (c)2003-2006, BuildForge, Inc. All rights reserved.
BuildForge, Inc. owns the copyright and other
intellectual property rights in this software.

Duplication or use of the Software is not permitted
except as expressly provided in a written agreement
between your company and BuildForge, Inc.

bfcqbuild.pl

Description:

This application is an extension of the ClearQuest API,
it is used to create and modify Build records inside of
ClearQuest.

Created by: rfuller
Modification Date: 11:01 AM 12/12/2005

Usage:
cqperl bfcqbuild.pl <update_state>

The following Parameters are set via the environment.

CQ_DBNAME
The ClearQuest Database Instance Name
CQ_DBSET
The Database set or connection string (default "")
CQ_USER
The ClearQuest User
CQ_PASSWORD
Corresponding user password (default "")
CQ_RELEASE_NAME
The Release Name as identified by ClearQuest
CQ_RECORD_ID
The CQ Build Record ID (if updating).
TAG
The Build Tag for the build.
BUILD_URL
A URL pointing to relevant build information
BUILD_LOG_TEXT
An extract of interesting build log information
HIDE_PASSWORD
Do not log the password
BFCQDEBUG
Print out debug info

 Page 29 of 41 “Integrating Build Forge with ClearQuest”

Import Libraries
use CQPerlExt;
use strict;

We don't want ClearQuest warnings reported in our output stream.
open (STDERR,"> nul");

Scope of our application
{
 my $ReqState = shift || "Submit";

 my $CQSession;
 my $CurState = "";
 eval { $CQSession = ValidateInfo($ReqState); };
 Error("Could not connect to ClearQuest - Invalid Initialization Data",$@) if($@);

 # See if this is a new submission, or a resubmit.

 # Get the current state if we have one...

 eval {$CurState = RecordExists($CQSession); };
 Debug("Curstate Is: $CurState");

 if($ReqState eq "Submit" && !$CurState) {
 $ReqState = CheckSubmit($CurState);
 Debug("Reqstate Now: $ReqState");
 }
 else {
 $ReqState = ValidateNextState($CurState,$ReqState);
 Debug("ReqState Now: $ReqState");
 }

 if($ReqState eq "CantChange") {
 Error("Cannot change build record.","The build record is in a Retired state.");
 }

 # Do our action.
 if($ReqState eq "Submit") {
 eval {CheckReleaseRecord($CQSession);};
 Error("Could not create Release Record in ClearQuest",$@) if($@);
 eval {SubmitBuild($CQSession);};
 Error("Could not submit build record to ClearQuest",$@) if($@);
 }
 else {
 eval {UpdateBuild($CQSession,$ReqState);};
 Error("Could not update build record in ClearQuest",$@) if($@);
 }

 # Drop our session, don't care if we error here, as we're leaving.
 eval { CQSession::Unbuild($CQSession); };

 Page 30 of 41 “Integrating Build Forge with ClearQuest”

 exit 0;
} # Scope

ValidateNextState

Make sure we're trying to set a valid state.
sub ValidateNextState {
 my($CurState,$ReqState) = @_;
 my @ValidStates = ("Submit","Resubmit","Retire","Complete","Failure");
 my $Valid = 0;
 foreach my $State (@ValidStates) {
 if($ReqState =~ /^$State$/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","State [$ReqState] is not recognized as a valid state for a
ClearQuest Build record. Valid states are [".join("],[",@ValidStates)."].") unless($Valid);
 @ValidStates = ();
 $Valid = 0;
 if($CurState =~ /Failed/i) {
 @ValidStates = ("Resubmit","Retire","Submit");
 if($ReqState =~ /Submit/i) {
 $ReqState = "Resubmit";
 }
 }
 elsif($CurState =~ /Completed/i) {
 @ValidStates = ("Retire");
 }
 elsif($CurState =~ /Retired/i) {
 @ValidStates = ();
 }
 elsif($CurState =~ /Submitted/i) {
 @ValidStates = ("Complete","Failure","Submit","NoChange");
 if($ReqState =~ /Submit/i) {
 $ReqState = "NoChange";
 }
 }
 foreach my $State (@ValidStates) {
 if($ReqState =~ /$State/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","Current state is [$CurState], requested next state as
[$ReqState], valid nextstate(s) are [".join("],[",@ValidStates)."].") unless($Valid);

 return $ReqState;
} # ValidateNextState

SubmitBuild

Create a new ClearQuest Build Record.
sub SubmitBuild {
 my($CQSession) = @_;

 Page 31 of 41 “Integrating Build Forge with ClearQuest”

 my $BuildRec = $CQSession->BuildEntity("btbuild");
 $BuildRec->SetFieldValue("start_datetime",genTimeStamp());
 $BuildRec->SetFieldValue("build_system_id",$ENV{'TAG'});
 $BuildRec->SetFieldValue("releasename",$ENV{'CQ_RELEASE_NAME'});
 $BuildRec->SetFieldValue("build_system_url",$ENV{'BUILD_URL'});
 $BuildRec->SetFieldValue("buildlog",$ENV{'BUILD_LOG_TEXT'});
 my $RecordId = $BuildRec->GetDisplayName();

 # Validate and Commit.
 $BuildRec->Validate();
 $BuildRec->Commit();
 Log("Build Record Created:\n$RecordId");
} # SubmitBuild

sub CheckReleaseRecord {
 my($CQSession) = @_;
 my $ReleaseRec = undef;
 eval {$ReleaseRec = $CQSession->GetEntity("dtrelease",$ENV{'CQ_RELEASE_NAME'});};
 return if(ref($ReleaseRec) eq "CQEntity");
 # Need to create the release record...
 my $CreateReleaseRec = $CQSession->BuildEntity("dtrelease");
 $CreateReleaseRec->SetFieldValue("release_name",$ENV{'CQ_RELEASE_NAME'});
 $CreateReleaseRec->Validate();
 my $CommitResult = $CreateReleaseRec->Commit();
 if($CommitResult eq "") {
 Log("Release Record Created:\n$ENV{'CQ_RELEASE_NAME'}");
 }
 else {
 Error("Could not create Release Record.",$CommitResult);
 }
}

UpdateBuild

Update an already existing Build Record.
sub UpdateBuild {
 my($CQSession,$Action) = @_;
 my $BuildRec = $CQSession->GetEntity("btbuild",$ENV{'CQ_RECORD_ID'});
 $CQSession->EditEntity($BuildRec,"modify");
 $BuildRec->SetFieldValue("build_system_url",$ENV{'BUILD_URL'})
if(exists($ENV{'BUILD_URL'}));
 $BuildRec->SetFieldValue("buildlog",$ENV{'BUILD_LOG_TEXT'})
if(exists($ENV{'BUILD_LOG_TEXT'}));
 if($Action =~ /(NoChange|Resubmit)/i) {
 $BuildRec->SetFieldValue("start_datetime",genTimeStamp());
 }
 elsif($Action !~ /Retire/i) {
 $BuildRec->SetFieldValue("end_datetime",genTimeStamp());
 }
 $BuildRec->Validate();
 $BuildRec->Commit();

 Page 32 of 41 “Integrating Build Forge with ClearQuest”

 if($Action=~/(Resubmit|Failure|Complete|Retire)/i) {
 $CQSession->EditEntity($BuildRec,$Action);
 $BuildRec->Validate();
 $BuildRec->Commit();
 }
 Log("Build Record Updated:\n$ENV{'CQ_RECORD_ID'}");
} # UpdateBuild

RecordExists

Check to see if our record exists and if this should be resubmitted, or other.
sub RecordExists {
 my ($CQSession) = @_;
 my $RecId = $ENV{'CQ_RECORD_ID'};
 my $Entity = undef;
 if($RecId) {
 $Entity = $CQSession->GetEntity("btbuild",$RecId);
 }
 my $StateRec = $Entity->GetFieldValue("State");
 return $StateRec->GetValue;
} # RecordExists

CheckSubmit

Check to see if a Submit can happen or if it’s a resubmit...
sub CheckSubmit {
 my($State) = @_;
 if($State =~ /Retired/i) {
 return "CantChange";
 }
 elsif($State =~ /(Completed|Failed)/i) {
 return "Resubmit";
 }
 elsif($State =~ /Submitted/i) {
 return "NoChange";
 }
 return "Submit";
} # CheckSubmit

ValidateInfo

Make sure we have the correct env for our request.
sub ValidateInfo {
 my ($ForState) = @_;
 my @RequiredInfo = ("CQ_DBNAME","CQ_USER");

 # Check our entry data...
 if($ForState =~/Submit/i) {
 push @RequiredInfo,("CQ_RELEASE_NAME","TAG","BUILD_URL","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Failure/i) {
 push @RequiredInfo,("CQ_RECORD_ID","BUILD_LOG_TEXT");
 }

 Page 33 of 41 “Integrating Build Forge with ClearQuest”

 elsif($ForState =~ /Complete/i) {
 push @RequiredInfo,("CQ_RECORD_ID","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Retire/i) {
 push @RequiredInfo,("CQ_RECORD_ID");
 }
 foreach my $Required (@RequiredInfo) {
 unless($ENV{$Required}) {
 die "The required environment parameter [$Required] for operation [$ForState]
was not set";
 }
 }

 # Create a connection to ClearQuest.
 my $CQSession = CQPerlExt::CQSession_Build();
 my $CQ_Password = $ENV{'CQ_PASSWORD'} || "";
 my $DB_Set = $ENV{'CQ_DBSET'} || "";
 Debug("Connecting To ClearQuest using the following Credentials:");
 Debug("USER:$ENV{'CQ_USER'}") if($ENV{'CQ_USER'});
 Debug("PASSWORD:$CQ_Password") if($CQ_Password && !$ENV{'HIDE_PASSWORD'});
 Debug("DBNAME:$ENV{'CQ_DBNAME'}") if($ENV{'CQ_DBNAME'});
 Debug("DBSET:$DB_Set") if($DB_Set);
 $CQSession->UserLogon($ENV{'CQ_USER'},$CQ_Password,$ENV{'CQ_DBNAME'},$DB_Set);
 return $CQSession;
} # ValidateInfo

genTimeStamp

Generate a CQ-friendly timestamp
sub genTimeStamp {
 my @Time=localtime();
 my $Time = sprintf("%d/%d/%d %d:%02d:%02d
%s",($Time[4]+1),$Time[3],($Time[5]+1900),($Time[2] > 12 ? ($Time[2]-12) : ($Time[2] == 0 ? 12
: $Time[2])),$Time[1],$Time[0],($Time[2] > 11 ? "P" : "A"));
 return $Time;
} # genTimeStamp

Log

Generic Logging
sub Log {
 my($String) = @_;
 print "LOG: $String\n";
} # Log

Debug

Generic Debugging
sub Debug {
 my($String) = @_;
 print "DEBUG: $String\n" if($ENV{'BFCQDEBUG'});
} # Debug

 Page 34 of 41 “Integrating Build Forge with ClearQuest”

Error

Application Exit/Failing
sub Error {
 my ($ErrShort,$ErrLong) = @_;
 print "ERROR: $ErrLong\n";
 print "$ErrShort\n";
 exit 1;
} # Error

END

 Page 35 of 41 “Integrating Build Forge with ClearQuest”

Appendix B - Modified bfcqbuild.pl

This script has the additions discussed in the Customizing the Build Forge – ClearQuest Base
Integration section. The modifications to the ClearQuest BTBuild record will also be required to take
advantage of the modifications.

#!/usr/bin/cqperl

Import Libraries
use CQPerlExt;
use strict;

We don't want ClearQuest warnings reported in our output stream.
open (STDERR,"> nul");

Scope of our application
{
 my $ReqState = shift || "Submit";

 my $CQSession;
 my $CurState = "";
 eval { $CQSession = ValidateInfo($ReqState); };
 Error("Could not connect to ClearQuest - Invalid Initialization Data",$@) if($@);

 # See if this is a new submission, or a resubmit.

 # Get the current state if we have one...

 eval {$CurState = RecordExists($CQSession); };
 Debug("Curstate Is: $CurState");

 if($ReqState eq "Submit" && !$CurState) {
 $ReqState = CheckSubmit($CurState);
 Debug("Reqstate Now: $ReqState");
 }
 else {
 $ReqState = ValidateNextState($CurState,$ReqState);
 Debug("ReqState Now: $ReqState");
 }

 if($ReqState eq "CantChange") {
 Error("Cannot change build record.","The build record is in a Retired state.");
 }

 # Do our action.
 if($ReqState eq "Submit") {
 eval {CheckReleaseRecord($CQSession);};
 Error("Could not create Release Record in ClearQuest",$@) if($@);
 eval {SubmitBuild($CQSession);};
 Error("Could not submit build record to ClearQuest",$@) if($@);

 Page 36 of 41 “Integrating Build Forge with ClearQuest”

 }
 else {
 eval {UpdateBuild($CQSession,$ReqState);};
 Error("Could not update build record in ClearQuest",$@) if($@);
 }

 # Drop our session, don't care if we error here, as we're leaving.
 eval { CQSession::Unbuild($CQSession); };

 exit 0;
} # Scope

sub ValidateNextState {
 my($CurState,$ReqState) = @_;
 my @ValidStates = ("Submit","Resubmit","Retire","Complete","Failure");
 my $Valid = 0;
 foreach my $State (@ValidStates) {
 if($ReqState =~ /^$State$/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","State [$ReqState] is not recognized as a valid state for a
ClearQuest Build record. Valid states are [".join("],[",@ValidStates)."].") unless($Valid);
 @ValidStates = ();
 $Valid = 0;
 if($CurState =~ /Failed/i) {
 @ValidStates = ("Resubmit","Retire","Submit");
 if($ReqState =~ /Submit/i) {
 $ReqState = "Resubmit";
 }
 }
################################
#Add a Warning valid state
################################

 if($CurState =~ /Warning/i) {
 @ValidStates = ("Resubmit","Retire");
 if($ReqState =~ /Submit/i) {
 $ReqState = "Resubmit";
 }
 }
 elsif($CurState =~ /Completed/i) {
 @ValidStates = ("Resubmit","Retire","Submit");
 }
 elsif($CurState =~ /Retired/i) {
 @ValidStates = ();
 }
 elsif($CurState =~ /Submitted/i) {
 @ValidStates = ("Complete","Failure","Submit","NoChange");
 if($ReqState =~ /Submit/i) {
 $ReqState = "NoChange";
 }
 }

 Page 37 of 41 “Integrating Build Forge with ClearQuest”

 foreach my $State (@ValidStates) {
 if($ReqState =~ /$State/i) {
 $Valid = 1;
 }
 }
 Error("Invalid state requested","Current state is [$CurState], requested next state as
[$ReqState], valid nextstate(s) are [".join("],[",@ValidStates)."].") unless($Valid);

 return $ReqState;
} # ValidateNextState

SubmitBuild

Create a new ClearQuest Build Record.
sub SubmitBuild {
 my($CQSession) = @_;
 my $BuildRec = $CQSession->BuildEntity("btbuild");
 $BuildRec->SetFieldValue("start_datetime",genTimeStamp());
 $BuildRec->SetFieldValue("build_system_id",$ENV{'TAG'});
 $BuildRec->SetFieldValue("releasename",$ENV{'CQ_RELEASE_NAME'});
 $BuildRec->SetFieldValue("build_system_url",$ENV{'BUILD_URL'});
 $BuildRec->SetFieldValue("buildlog",$ENV{'BUILD_LOG_TEXT'});
 my $RecordId = $BuildRec->GetDisplayName();

 # Validate and Commit.
 $BuildRec->Validate();
 $BuildRec->Commit();
 Log("Build Record Created:\n$RecordId");
} # SubmitBuild

sub CheckReleaseRecord {
 my($CQSession) = @_;
 my $ReleaseRec = undef;
 eval {$ReleaseRec = $CQSession->GetEntity("dtrelease",$ENV{'CQ_RELEASE_NAME'});};
 return if(ref($ReleaseRec) eq "CQEntity");
 # Need to create the release record...
 my $CreateReleaseRec = $CQSession->BuildEntity("dtrelease");
 $CreateReleaseRec->SetFieldValue("release_name",$ENV{'CQ_RELEASE_NAME'});
 $CreateReleaseRec->Validate();
 my $CommitResult = $CreateReleaseRec->Commit();
 if($CommitResult eq "") {
 Log("Release Record Created:\n$ENV{'CQ_RELEASE_NAME'}");
 }
 else {
 Error("Could not create Release Record.",$CommitResult);
 }
}

UpdateBuild

Update an already existing Build Record.

 Page 38 of 41 “Integrating Build Forge with ClearQuest”

sub UpdateBuild {
 my($CQSession,$Action) = @_;

 my $BuildRec = $CQSession->GetEntity("btbuild",$ENV{'CQ_RECORD_ID'});
 $CQSession->EditEntity($BuildRec,"modify");
 $BuildRec->SetFieldValue("build_system_url",$ENV{'BUILD_URL'})
if(exists($ENV{'BUILD_URL'}));
 $BuildRec->SetFieldValue("buildlog",$ENV{'BUILD_LOG_TEXT'})
if(exists($ENV{'BUILD_LOG_TEXT'}));

################################
#Grab the new Build Tag
################################

 my $tag = BF_tag();
################################
#Update the new record field build_tag with the new build tag
################################

 $BuildRec->SetFieldValue("build_tag",$tag);

if($Action =~ /(NoChange|Resubmit)/i) {
 $BuildRec->SetFieldValue("start_datetime",genTimeStamp());
 }
 elsif($Action !~ /Retire/i) {
 $BuildRec->SetFieldValue("end_datetime",genTimeStamp());
 }
 $BuildRec->Validate();
 $BuildRec->Commit();

 if($Action=~/(Resubmit|Failure|Complete|Retire)/i) {

 ################################

#Get the build result
################################

 my $result = bf_result();
 $CQSession->EditEntity($BuildRec,$Action);
 $BuildRec->Validate();
 $BuildRec->Commit();

 ################################

#If the result is either WARNING_FILTER or WARNING_FAILED_STEP
#Update the build record state to Warning
################################

 if ($result =~ /warn/i) {
 my $ret = $CQSession->EditEntity($BuildRec,'Warning');
 $BuildRec->Validate();
 $BuildRec->Commit();
 }
 }

 Log("Build Record Updated:\n$ENV{'CQ_RECORD_ID'}");
} # UpdateBuild

 Page 39 of 41 “Integrating Build Forge with ClearQuest”

RecordExists

Check to see if our record exists and if this should be resubmitted, or other.
sub RecordExists {
 my ($CQSession) = @_;
 my $RecId = $ENV{'CQ_RECORD_ID'};
 my $Entity = undef;
 if($RecId) {
 $Entity = $CQSession->GetEntity("btbuild",$RecId);
 }
 my $StateRec = $Entity->GetFieldValue("State");
 return $StateRec->GetValue;
} # RecordExists

CheckSubmit

Check to see if a Submit can happen or if it’s a resubmit...
sub CheckSubmit {
 my($State) = @_;
 if($State =~ /Retired/i) {
 return "CantChange";
 }
 elsif($State =~ /(Completed|Failed)/i) {
 return "Resubmit";
 }
 elsif($State =~ /Submitted/i) {
 return "NoChange";
 }
 return "Submit";
} # CheckSubmit

ValidateInfo

Make sure we have the correct env for our request.
sub ValidateInfo {
 my ($ForState) = @_;
 my @RequiredInfo = ("CQ_DBNAME","CQ_USER");

 # Check our entry data...
 if($ForState =~/Submit/i) {
 push @RequiredInfo,("CQ_RELEASE_NAME","TAG","BUILD_URL","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Failure/i) {
 push @RequiredInfo,("CQ_RECORD_ID","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Complete/i) {
 push @RequiredInfo,("CQ_RECORD_ID","BUILD_LOG_TEXT");
 }
 elsif($ForState =~ /Retire/i) {
 push @RequiredInfo,("CQ_RECORD_ID");
 }
 foreach my $Required (@RequiredInfo) {
 unless($ENV{$Required}) {

 Page 40 of 41 “Integrating Build Forge with ClearQuest”

 die "The required environment parameter [$Required] for operation [$ForState]
was not set";
 }
 }

 # Create a connection to ClearQuest.
 my $CQSession = CQPerlExt::CQSession_Build();
 my $CQ_Password = $ENV{'CQ_PASSWORD'} || "";
 my $DB_Set = $ENV{'CQ_DBSET'} || "";
 Debug("Connecting To ClearQuest using the following Credentials:");
 Debug("USER:$ENV{'CQ_USER'}") if($ENV{'CQ_USER'});
 Debug("PASSWORD:$CQ_Password") if($CQ_Password && !$ENV{'HIDE_PASSWORD'});
 Debug("DBNAME:$ENV{'CQ_DBNAME'}") if($ENV{'CQ_DBNAME'});
 Debug("DBSET:$DB_Set") if($DB_Set);
 $CQSession->UserLogon($ENV{'CQ_USER'},$CQ_Password,$ENV{'CQ_DBNAME'},$DB_Set);
 return $CQSession;
} # ValidateInfo

genTimeStamp

Generate a ClearQuest-friendly timestamp
sub genTimeStamp {
 my @Time=localtime();
 my $Time = sprintf("%d/%d/%d %d:%02d:%02d
%s",($Time[4]+1),$Time[3],($Time[5]+1900),($Time[2] > 12 ? ($Time[2]-12) : ($Time[2] == 0 ? 12
: $Time[2])),$Time[1],$Time[0],($Time[2] > 11 ? "P" : "A"));
 return $Time;
} # genTimeStamp

Log

Generic Logging
sub Log {
 my($String) = @_;
 print "LOG: $String\n";
} # Log

Debug

Generic Debugging
sub Debug {
 my($String) = @_;
 print "DEBUG: $String\n" if($ENV{'BFCQDEBUG'});
} # Debug

Error

Application Exit/Failing
sub Error {
 my ($ErrShort,$ErrLong) = @_;
 print "ERROR: $ErrLong\n";
 print "$ErrShort\n";
 exit 1;

 Page 41 of 41 “Integrating Build Forge with ClearQuest”

} # Error

sub BF_tag {

 my $conn = bf_conn();
 $ENV{'BUILD_URL'} =~ /.*?bf_id\=(\d*)/;
 my $bid = $1;
 my $build = BuildForge::Services::DBO::Build->findById($conn, $bid);
 my $build_tag = $build->getTag();
 my $build_result = $build->getResult();
 return $build_tag;

}

sub bf_result {
 $ENV{'BUILD_URL'} =~ /.*?bf_id\=(\d*)/;
 my $conn = bf_conn();
 my $bid = $1;
 my $build = BuildForge::Services::DBO::Build->findById($conn, $bid);
 my $build_result = $build->getResult();
 return $build_result;
}

sub bf_conn {

################################
#Update with the @INC path for the BuildForge Perl API client for your system
################################

 use lib "C:/Perl/site/lib";
 use BuildForge::Services;

################################
#Use Build Forge environment variables if desired. You can then both hide the API user’s
password
#and use different credentials for different teams by associating a different user and pass
#with the ClearQuest environment the team is using.
################################

 my $hostname = 'localhost';
 my $user = 'build';
 my $pass = 'build';

my $conn = new BuildForge::Services::Connection($hostname);
 $conn->authUser($user, $pass);
 return $conn;

}

END

	 Introduction
	 Basic ClearQuest Integration
	ClearQuest Requirements
	BuildTracking
	DeploymentTracking

	Build Forge Requirements
	CQ_DBNAME
	CQ_DBSET
	CQ_USER
	CQ_PASSWORD
	CQ_RELEASE_NAME
	CQ_RECORD_ID
	HIDE_PASSWORD
	BFCQDEBUG

	How it Works
	Instantiation
	Completion

	 Steps to Integrate Examples
	ClearQuest Steps
	Build Forge Steps

	 bfcqbuild.pl
	Breakdown
	Different Functions
	Main Body
	ValidateInfo()
	RecordExists()
	CheckSubmit()
	ValidateNextState()
	CheckReleaseRecord()
	SubmitBuild()
	UpdateBuild()

	 Customizing the Build Forge – ClearQuest Base Integration
	Customizing bfcqbuild.pl
	Getting the Tag Field When Using .retag In A Build

	Customizing the ClearQuest Build Record
	How it all fits together

	 Appendix A – bfcqbuildpl. script
	 Appendix B - Modified bfcqbuild.pl

